CONCOURS D'ENTREE EN 1ère ANNEE - SESSION DE JUIN 2023

EPREUVE DE MATHEMATIQUES

Duration 3h00 - Coefficient 4

EXERCISE 1: 5 Points

In order to equip students of a certain locality, a municipal councilor buys three category of pens from a vendor, marked, A, B and C.

In 40% of the pens of mark $A, 15 \%$ are defective.
In 35% of the pens of mark B, 10\% are defective.
In 25% of the pens of mark C, 5% are defective.
A pen is chosen at random from the stock of pens.
1- Draw a tree diagram, showing the respective probability of each branch. 1 pt
2- Find the probability that the pen is defective.
3-Find the probability that the pen is not defective. What is the probability to the nearest hundredth that the pen is of mark C ?

EXERCISE 2: 5 Points

The table below represent the height (x) and the size (y) of 10 students selected randomly from a class.

x	150	159	158	160	165	168	170	172	175	171
y	40	41	43	43	42	44	44	44.5	44.5	44

1- Draw a scatter diagram to show the statistical situation.

2- Determine the mean point G and plot it on the diagram.

3- Calculate the covariance of ($x y$) and the variance of x and that of y.
0.75pt

4- Calculate the coefficient of linear correlation.
5- Use the least square method to determine the regression line of y on $x .1 p t$
6- Deduce the shoe size of a student whose height is 163 cm .
0.5pt

EXERCISE 3: 5 Points

Consider a sequence $\left(U_{n}\right)$ defined by : $U_{0}=0 ; U_{1}=1$ and for all $\mathrm{n} \in \mathbb{N}$, $U_{n+2}=5 U_{n+1}-4 U_{n}$.

1) Calculate the terms $U_{2} ; U_{3} ; U_{4}$ of the sequence $\left(U_{n}\right)$
0.75pt
2) a- Use mathematical induction to show that for all $\mathrm{n} \in \mathbb{N}, U_{n+1}=4 U_{n}+1$. 0.5 pt
b- Show that for all natural number n, U_{n} is a natural number.
0.5pt
3) Let $\left(V_{n}\right)$ be a sequence defined for all natural number n by: $V_{n}=U_{n}+\frac{1}{3}$.
a- Show that $\left(V_{n}\right)$ is a geometric sequence and calculate the first term V_{0} and the common ratio.
0.5 pt

4- Let f be a function of real variable defined by $f(x)=(2 x+1) e^{-x}+1$.
Consider the differential equations (E) and (E^{\prime}) :
($\left.\mathrm{E}^{\prime}\right): 3 y^{\prime \prime}+2 y^{\prime}-y=0$ et $(E): 3 y^{\prime \prime}+2 y^{\prime}-y=-8 e^{-x}-1$
a) Verify that f is a solution of (E).
b) Show that a function g is a solution of (E) if and only if $g-f$ is a solution of (E')
c) Solve the equation (E^{\prime}) and deduce the solution of (E).

EXERCISE 4: 5 Points

Let g be a function defined on \mathbb{R} by $g(x)=\frac{e^{x}}{1+e^{x}}$
And (C) the curve representing g in an orthonormal system $(0, \vec{\imath}, \vec{\jmath})$ (of unit: 4cm)

1-a) Study the variation of g and draw a table of variation.
b) Draw the curve (C) showing its asymptotes.

2- Consider the points M and M^{\prime} of the curve (C) of abscissa x and $-x$
a) Determine the coordinates of the point A of the segment $\left[M M^{\prime}\right]$. 0.5pt
b) What does the point A represents on the curve (C)?
0.25pt

3- Let $n \in \mathbb{N} \backslash\{0\}$. We represent by D_{n} the domain of the plane limited by the lines $\mathrm{y}=1$, the curve (C) and the lines with equation $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{n} . A_{n}$ represents the area of the domain expressed in unit of area.
a) Calculate A_{n} as a function of n.
b) Study the convergence of the sequence $\left(A_{n}\right)$

4-
a) Determine real numbers a and b such that $\frac{e^{2 x}}{\left(1+e^{x}\right)^{2}}=\frac{a e^{x}}{1+e^{x}}+\frac{b e^{x}}{\left(1+e^{x}\right)^{2}}$
b) Express as a function of $\alpha, V(\alpha)=\int_{\alpha}^{0} \frac{e^{2 x}}{\left(1+e^{x}\right)^{2}} d x$.
c) Calculate the limit of $V(\alpha)$ as α tends to $-\infty$.
0.25pt

