

CONCOURS D'ENTREE EN 1ère ANNEE – SESSION DE JUIN 2023

EPREUVE DE MATHEMATIQUES

Duration 3h00 - Coefficient 4

EXERCISE 1: 5 Points

In order to equip students of a certain locality, a municipal councilor buys three category of pens from a vendor, marked, A, B and C.

In 40% of the pens of mark A, 15% are defective.

In 35% of the pens of mark B, 10% are defective.

In 25% of the pens of mark C, 5% are defective.

A pen is chosen at random from the stock of pens.

- 1- Draw a tree diagram, showing the respective probability of each branch.1 pt
- 2- Find the probability that the pen is defective.

2pt

3-Find the probability that the pen is not defective. What is the probability to the nearest hundredth that the pen is of mark C? **2 pt**

EXERCISE 2: 5 Points

The table below represent the height (x) and the size (y) of 10 students selected randomly from a class.

x	150	159	158	160	165	168	170	172	175	171
y	40	41	43	43	42	44	44	44.5	44.5	44

1- Draw a scatter diagram to show the statistical situation. **1 pt**

2- Determine the mean point G and plot it on the diagram. 0.75pt

- **3-** Calculate the covariance of (x y) and the variance of x and that of y. **0.75pt**
- 4- Calculate the coefficient of linear correlation.

1pt

- 5- Use the least square method to determine the regression line of y on x. 1pt
- **6-** Deduce the shoe size of a student whose height is 163 cm.

0.5pt

EXERCISE 3: 5 Points

Consider a sequence (U_n) defined by : $U_0=0$; $U_1=1$ and for all $n\in\mathbb{N}$, $U_{n+2}=5U_{n+1}-4U_n$.

1) Calculate the terms U_2 ; U_3 ; U_4 of the sequence (U_n)

0.75pt

- 2) a- Use mathematical induction to show that for all $n \in \mathbb{N}$, $U_{n+1} = 4U_n + 1$. 0.5pt
 - **b-** Show that for all natural number n, U_n is a natural number.

0.5p

- **3)** Let (V_n) be a sequence defined for all natural number n by : $V_n = U_n + \frac{1}{3}$.
- **a-** Show that (V_n) is a geometric sequence and calculate the first term V_0 and the common ratio. **0.5pt**
- **4-** Let f be a function of real variable defined by $f(x) = (2x+1)e^{-x} + 1$.

Consider the differential equations (E) and (E'):

(E'):
$$3y'' + 2y' - y = 0$$
 et $(E): 3y'' + 2y' - y = -8e^{-x} - 1$

a) Verify that f is a solution of (E).

0.5pt

- b) Show that a function g is a solution of (E) if and only if g-f is a solution of (E')

 1.25pt
- c) Solve the equation (E') and deduce the solution of (E).

1 pt

EXERCISE 4: 5 Points

Let g be a function defined on \mathbb{R} by $g(x) = \frac{e^x}{1+e^x}$

And (C) the curve representing g in an orthonormal system $(0, \vec{i}, \vec{j})$ (of unit : 4cm)

1-a) Study the variation of g and draw a table of variation.

1 pt

b) Draw the curve (C) showing its asymptotes.

1pt

- **2-** Consider the points M and M' of the curve (C) of abscissa x and -x
 - a) Determine the coordinates of the point A of the segment [MM'].

0.5pt

b) What does the point A represents on the curve (C)?

0.25pt

- **3-** Let $n \in \mathbb{N} \setminus \{0\}$. We represent by D_n the domain of the plane limited by the lines y=1, the curve (C) and the lines with equation x=0 and x=n. A_n represents the area of the domain expressed in unit of area.
 - a) Calculate A_n as a function of n.

0.5pt

b) Study the convergence of the sequence (A_n)

0.5pt

4-

- a) Determine real numbers a and b such that $\frac{e^{2x}}{(1+e^x)^2} = \frac{ae^x}{1+e^x} + \frac{be^x}{(1+e^x)^2}$ 0.5pt
- **b)** Express as a function of α , $V(\alpha) = \int_{\alpha}^{0} \frac{e^{2x}}{(1+e^{x})^{2}} dx$.

0.5 pt

c) Calculate the limit of $V(\alpha)$ as α tends to $-\infty$.

0.25pt